Journals
[1] Chen, Y.H.†, Fukumoto, K.†, Miao, Y.L., Zheng, J.R., Tang, F., Hu, L.H., 2025, Crosswind-induced spanwise flapping of tandem turbulent diffusion flames: Experimental- and Large eddy simulation-based study, Journal of Fluid Mechanics, in press, (†Both authors contributed equally as co-first authors)
[2] Li, T., Choi, C., Fukumoto, K., Machida, H., Norinaga, K., 2025, Coal gasification in a two-stage entrained flow gasifier under O₂/CO₂ conditions, Energy & Fuels, in press.
[3] Shimada, T., Nakamura, M., Fukumoto, K., Ibrahim, M., Wasnik, C.G., Machida, H., Norinaga, K., 2025, Nickel/Zirconia-Catalyzed CO₂ Methanation in Differential and Integral Fixed-Bed Reactors: Experimental and Computational Fluid Dynamics Studies, Industrial & Engineering Chemistry Research, 64: 1473–1487, https://doi.org/10.1021/acs.iecr.4c03789dh
[4] Li, T., Fukumoto, K., Zhang, L., Lin, Y., Choi, C., Machida, H., Norinaga, K., 2025, Numerical investigation of polycyclic aromatic hydrocarbons (PAHs) and soot formation from various coals in a two-stage entrained flow gasifier with detailed chemistry, Journal of Analytical and Applied Pyrolysis, 188: 107027, https://doi.org/10.1016/j.jaap.2025.107027
[5] Fukumoto, K., Zhang, W., Choi, C., Tang, F., Machida, H., Norinaga, K., 2025, CFD simulation of crude oil fouling from laboratory- to industrial-scale heat exchangers using a weak coupling approach, Applied Thermal Engineering, 258: 124614, https://doi.org/10.1016/j.applthermaleng.2024.124614
[6] Ogawa, T., Fukumoto, K., Machida, H., Norinaga, K., 2023, CFD simulation of CVD reactors in the CH₃SiCl₃(MTS)/H₂ system using a simple SiC growth model, Heliyon, 9(4): e15061, https://doi.org/10.1016/j.heliyon.2023.e15061
[7] Fukumoto, K., Zhang, W., Mizoguchi, R., Lin, Y., Choi, C., Machida, H., Norinaga, K., 2023, CFD simulation of CO₂ methanation through the Sabatier reaction in a shell-and-tube reactor incorporating phase change on the shell side, Fuel, 349: 128126, https://doi.org/10.1016/j.fuel.2023.128126
[8] Li, T., Choi, C., Fukumoto, K., Machida, H., Norinaga, K., 2023, Polycyclic aromatic hydrocarbons (PAHs) and soot formations under different gasifying agents: Detailed chemical kinetic analysis of a two-stage entrained flow coal gasifier, Fuel, 343: 127876, https://doi.org/10.1016/j.fuel.2023.127876
[9] Ding, Y., Jiang, G., Fukumoto, K., Zhao, M., Zhang, X., Wang, C., Li, C., 2023, Experimental and numerical simulation of multi-component combustion of typical no-charring material, Energy, 262B: 125555, https://doi.org/10.1016/j.energy.2022.125555
[10] Lin, Y., Yang, C., Zhang, W., Fukumoto, K., Saito, Y., Machida, H., Norinaga, K., 2023, Estimation of effective thermal conductivity in open-cell foam with hierarchical pore structure using lattice Boltzmann method, Applied Thermal Engineering, 218: 119314, https://doi.org/10.1016/j.applthermaleng.2022.119314
[11] Chen, Y., Fukumoto, K., Zhang, X., Lin, Y., Tang, F., Hu, L., 2023, Study of elevated- and ground pool fire flame horizontal lengths in cross airflows: Air entrainment change due to Coanda effect, Proceedings of the Combustion Institute, 39, https://doi.org/10.1016/j.proci.2022.09.038
[12] Fukumoto, K., Wang, C., Wen, J.X., 2022, Study on the role of soot and heat fluxes in upward flame spread using a wall resolved large eddy simulation approach, Journal of Thermal Analysis and Calorimetry, 147: 4645–4665, https://doi.org/10.1007/s10973-021-10791-6
[13] Lin, Y., Yang, C., Choi, C., Zhang, W., Fukumoto, K., Machida, H., Norinaga, K., 2021, Inhibition of temperature runaway phenomenon in the Sabatier process using bed dilution structure: LBM–DEM simulation, AIChE Journal, 37(10): e17304, https://doi.org/10.1002/aic.17304
[14] Choi, C., Zhang, W., Fukumoto, K., Machida, H., Norinaga, K., 2021, A review on detailed kinetic modeling and computational fluid dynamics of thermochemical processes of solid fuels, Energy & Fuels, 35(7): 5479–5494, https://doi.org/10.1021/acs.energyfuels.0c04052
[15] Fukumoto, K., Wen, J.X., Li, M., Wang, C., 2020, Numerical simulation of small pool fires incorporating liquid fuel motion, Combustion and Flame, 213: 441–454, https://doi.org/10.1016/j.combustflame.2019.11.047
[16] Ding, Y., Fukumoto, K., Ezekoye, O.A., Lu, S., Wang, C.J., 2020, Experimental and numerical simulation of multi-component combustion of typical charring material, Combustion and Flame, 211: 417–429, https://doi.org/10.1016/j.combustflame.2019.10.016
[17] Fukumoto, K., Wang, C.J., Wen, J., 2019, Large eddy simulation of a syngas jet flame: Effects of preferential diffusion and turbulence-chemistry interaction, Energy & Fuels, 33(6): 5561–5581, https://doi.org/10.1021/acs.energyfuels.9b00130
[18] Li, M., Fukumoto, K., Wang, C.J., Zhang, X., Yang, S., 2018, Phenomenological characterization and investigation of the mechanism of flame spread over butanol-diesel blended fuel, Fuel, 233(1): 21–28, https://doi.org/10.1016/j.fuel.2018.06.033
[19] Fukumoto, K., Wang, C.J., Wen, J., 2018, Large eddy simulation of upward flame spread on PMMA walls with a fully coupled fluid-solid approach, Combustion and Flame, 190: 365–387, https://doi.org/10.1016/j.combustflame.2017.11.012
[20] Li, M., Wang, C.J., Yang, S., Fukumoto, K., Fan, C., 2018, Combustion and flame spreading characteristics of diesel fuel with forced air flows, Fuel, 216: 390–397, https://doi.org/10.1016/j.fuel.2017.11.100
[21] Fukumoto, K., Ogami, Y., 2014, Simulation of turbulent non-premixed and partially premixed flames using a look-up table, Journal of Thermal Science and Technology, 9(1): JTST0003, https://doi.org/10.1299/jtst.2014jtst0003
[22] Fukumoto, K., Ogami, Y., 2012, Simulation of CO–H₂–air turbulent non-premixed flame using the eddy dissipation concept model with look-up table approach, Journal of Combustion, 2012: 496460, https://doi.org/10.1155/2012/496460
[23] Fukumoto, K., Ogami, Y., 2012, Combustion simulation technique for reducing chemical mechanisms using a look-up table of chemical equilibrium calculations: Application to CO–H₂–air turbulent non-premixed flame, Computers & Fluids, 66: 98–106, https://doi.org/10.1016/j.compfluid.2012.06.001
[24] Fukumoto, K., Ogami, Y., 2010, Turbulent diffusion combustion model using chemical equilibrium combined with the eddy dissipation concept for reducing detailed chemical mechanisms: An application of H₂–air turbulent diffusion flame, Heat Transfer – Asian Research, 39: 292–313, https://doi.org/10.1002/htj.20296
[25] Ogami, Y., Fukumoto, K., 2010, Simulation of combustion by the vortex method, Computers & Fluids, 39(4): 592–603, https://doi.org/10.1016/j.compfluid.2009.10.008
[26] Fukumoto, K., Ogami, Y., 2009, Turbulent diffusion combustion model using chemical equilibrium combined with the eddy dissipation model for simple prediction of combustion products (in Japanese), Journal of High Temperature Society, 35(4): 205–214, https://doi.org/10.7791/jhts.35.205
[27] Fukumoto, K., Ogami, Y., 2009, Turbulent diffusion combustion model using chemical equilibrium combined with the eddy dissipation concept for reducing detailed chemical mechanisms: An application of H₂–air turbulent diffusion flame (in Japanese), Thermal Science and Engineering, 17(4): 133–145, https://doi.org/10.11368/tse.17.133
[28] Fukumoto, K., Sakai, R., Ogami, Y., 2009, Turbulent diffusion combustion model using chemical equilibrium combined with the eddy dissipation model for simple prediction of combustion (in Japanese), Journal of High Temperature Society, 35(3): 142–150, https://doi.org/10.7791/jhts.35.142
Books
[29] K. Fukumoto, M. Nakamura, Recent trends in methanation and green hydrogen, CMC Publishing Co., Ltd., Japan, 2023, ISBN: 978-4-7813-1754-0.
[30] K. Fukumoto, R. Mizoguchi, C. Choi, Z. Wei, K. Norinaga, Computational fluid study of the methanation catalyst reactor, in: Chemical Engineering toward Carbon Neutral, Chapter 4.1, Maruzen Co., Ltd., Japan, 2023, pp. 158–173, ISBN: 978-4621307724.
[31] K. Fukumoto, R. Mizoguchi, C. Choi, Z. Wei, K. Norinaga, Computational fluid study of the methanation catalyst reactor, in: Engineering for Green Transformation, Chapter 4.1, Sankeisha Co., Ltd., Japan, 2021, pp. 175–193, ISBN: 978-4-86693-542-3.
[32] K. Fukumoto, Y. Ogami, Simulation of H₂–air non-premixed flame using combustion simulation technique to reduce chemical mechanisms, in: Fluid Dynamics, Computational Modeling and Applications, Chapter 15, IntechOpen, UK, 2012, pp. 357–380, https://doi.org/10.5772/2403.
Symposium Proceedings
[33] Fukumoto, K., Chen, Y., Miao, Y., Tang, F., Hu, L., “Large eddy simulation of turbulent tandem diffusion flames under cross wind conditions,” Proceedings of the 19th International Conference on Numerical Combustion, Kyoto, Japan, 7–10 May 2024.
[34] Fukumoto, K., Wang, C.J., Wen, J.X., “Analysis of heat flux components and their influences on flame spread over PMMA walls using a wall resolved large eddy simulation approach,” Proceedings of the 27th International Colloquium on the Dynamics of Explosions and Reactive Systems, Beijing, China, 28 July–2 August 2019.
[35] Fukumoto, K., Wang, C. J., Wen, J. X., “Analysis of heat flux components on PMMA wall fires and upward flame spread configuration,” Proceedings of the FM Global Open Source CFD Fire Modeling Workshop, Boston, USA, 5–6 June 2019.
[36] Fukumoto, K., Wen, J., “Large eddy simulation of upward flame spread on PMMA wall based on a fully fluid–solid coupled approach,” Proceedings of the International Symposium on Safety Science and Technology, Kunming, Yunnan Province, China, 17–19 October 2016.
[37] Fukumoto, K., Wang, C. J., Wen, J., “Large eddy simulation of a syngas jet flame using the extended eddy dissipation concept with a non-unity Lewis number approach and detailed reaction mechanism,” Proceedings of the 2018 International Symposium on Hydrogen Fire, Explosion and Safety Standard, Hefei, Anhui Province, China, 6–8 July 2018.
[38] Fukumoto, K., Wang, C. J., Wen, J., “Large eddy simulation of upward flame spread on a PMMA wall,” Proceedings of the FM Global Open Source CFD Fire Modeling Workshop, Boston, USA, 15–16 May 2015.
Reports
[39] NEDO, “Development of CO₂ effective utilization technology,” NEDO Report No. 20210000000728, Project No. p16002, 2017–2021, Chapter 4.1.1.2, available at: https://seika.nedo.go.jp/pmg/PMG01C/PMG01CG01?startId=1669345358726&forward=1.
[40] NEDO, “Feasibility study on self-heat regenerative high-efficiency oxygen enricher technology with cyclone-based gas–liquid separation mechanism,” NEDO Feasibility Study Program, Acceptance No. 201E104Y, Project period: May 2020–Mar. 2021 (participation: Nov. 2020–Mar. 2021), Nagoya University, Internal report [Confidential].
[41] Fukumoto, K., Choi, C., Norinaga, Y., “FY2021 Report of the petroleum refining fouling prevention subcommittee: Development of fouling rate models and heat and fluid computational methods to understand heat exchanger fouling phenomena in petroleum refining processes,” Nagoya University, Apr. 28, 2022, Internal report [Confidential].