Journals
[1] W. He, Q. Xu, C. Xie, J. Z. Yin, P. D. Li, Z. D. Wang, L. D. Zhang*, L. X. Wei*, 2022, Experimental and kinetic modeling studies of 2-acetylfuran pyrolysis at atmospheric pressure, Combust. Flame 236: 111824.
[2] S. S. Ruan, Y. T. Zhai, C. C. Ao, C. L. He, K. W. Xu, L. D. Zhang*, 2021, Unraveling the low-temperature oxidation mechanism between methyl crotonate radicals and O2, Combust. Flame 231: 111473.
[3] Y. T. Zhai, B. B. Feng, Q. H. Meng, C. C. Ao, S. Y. Qian, L. D. Zhang*, 2021 Catalytic combustion of methyl butanoate over HZSM-5 zeolites, Chem. Commun. 57: 2233.
[4] K. W. Xu, Z. C. Wang, C. L. He, S. S. Ruan, F. Y. Liu*, L. D. Zhang*, 2021, Flame In Situ Synthesis of Metal-Anchored CuO Nanowires for CO Catalytic Oxidation and Kinetic Analysis, ACS Applied Energy Materials, https://doi.org/10.1021/acsaem.1c02814
[5] C. C. Ao, S. S. Ruan, W. He, C. L. He, K. W. Xu, L. D. Zhang*, 2021, Theoretical investigation of chemical reaction kinetics of CO2 and vinyl radical under catalytic combustion, Fuel 305: 121566.
[6] C. C. Ao, S. S. Ruan, W. He, Y. Liu, C. L. He, K. W. Xu, L. D. Zhang*, 2021, Toward high-level theoretical studies on the reaction kinetics of PAHs growth based on HACA pathway: An ONIOM[G3(MP2,CC)//B3LYP:DFT] method developed, Fuel301: 121052.
[7] C. C. Ao, W. Zhao, S. S. Ruan, S. Y. Qian, Y. Liu, L. Wang, L. D. Zhang*, 2021, Theoretical investigations of electrochemical CO2 reduction by transition metals anchored on CNTs,Sustainable Energy & Fuels4: 6156.
[8] Z. H. Yu, N. Ji, J. Xiong, X. Y. Li, R. Zhang, L. D. Zhang, X. B. Lu*, 2021, Ruthenium-Nanoparticle-Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void-Confinement Effect,Angew. Chem. Int. Ed. 60: 20786.
[9] C. C. Ao, B. B. Feng, S. Y. Qian, L. Wang, W. Zhao, Y. T. Zhai, L. D. Zhang*, 2020, Theoretical study of transition metals supported on g-C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4,J. CO2 Utilization, 36: 116.
[10] Y. T. Zhai, B. B. Feng, Y. Zhang, B. W. Mei, J. B. Zou, J. Z. Yang, L. D. Zhang*, S.M. Sarathy, 2020, Experimental and kinetic modeling study of methyl heptanoate low-temperature oxidation in a jet-stirred reactor, Fuel, 283: 118885.
[11] J. J. Wang, H. T. Xu*, C. C. Ao, X. B. Pan, X. K. Luo, S. J. Wei, Z. Li*, L. D. Zhang*, Z. L. Xu, Y. D. Li, 2020, Au@Pt Nanotubes within CoZn-Based Metal-Organic Framework for Highly Efficient Semi-hydrogenation of Acetylene, iScience, 23:101233.
[12] P. Z. Chen, N. Zhang, S. B. Wang, T. P. Zhou, Y. Tong, C. C. Ao, W. S. Yan, L. D. Zhang, W. S. Chu, C. Z. Wu*, Y. Xie, 2019, PANS, 116: 6635.
[13] Y. T. Zhai, B. B. Feng, W. H. Yuan, C C. Ao, L. D. Zhang*, 2018, Experimental and modeling studies of small typical methyl esters pyrolysis: Methyl butanoate and methyl crotonate, Combust. Flame191: 160.
[14] Y. Tong, Y. Q. Guo, P. Z. Chen, H. F. Liu, M. X. Zhang, L. D. Zhang, W. S. Yan, W. S. Chu, C. Z. Wu*, Y. Xie, 2017, Spin-State Regulation of Perovskite Cobaltite to Realize Enhanced Oxygen Evolution Activity,Chem, 3: 812.
[15] W. T. Bi, X. G. Li, L. Zhang, T. Jin, L. D. Zhang, Q. Zhang, Y. Luo, C. Z. Wu*, Y. Xie, 2015, Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution, Nature Communications 6: 8647.
[16] L. D. Zhang, Q. X. Chen, P. Zhang*, 2015, A theoretical kinetics study of the reactions of methyl butanoate with hydrogen and hydroxyl radicals, Proc. Combust. Inst, 35: 481.