Y. L. Ding, C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu (2015) Small 11 6026-6035. |
|
|
Date: 2016-03-02
Author: SKLFS  , Source: SKLFS  ,
|
|
Y. L. Ding, C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu (2015) Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage. Journal/Small 11 6026-6035. [In English] Web link: http://dx.doi.org/10.1002/smll.201502000 Keywords: alloys, batteries, confinement replacement, graphene, nanostructures, anodes, LI-ION BATTERIES, LONG CYCLE LIFE, ALLOY ANODES, ELECTROCHEMICAL, STORAGE, HOLLOW NANOSPHERES, SOLVOTHERMAL ROUTE, PERFORMANCE, SILICON, NANOPARTICLES, COMPOSITE Abstract: Alloy anodes have shown great potential for next-generation lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). However, these applications are still limited by inherent huge volume changes and sluggish kinetics. To overcome such limitations, graphene-protected 3D Sb-based anodes grown on conductive substrate are designed and fabricated by a facile electrostatic-assembling and subsequent confinement replacement strategy. As binder-free anodes for LIBs, the obtained electrode exhibits reversible capacities of 442 mAh g(-1) at 100 mA g(-1) and 295 mAh g(-1) at 1000 mA g(-1), and a capacity retention of above 90% (based on the 10th cycle) after 200 cycles at 500 mA g(-1). As for sodium storage properties, the reversible capacities of 517 mAh g(-1) at 50 mA g(-1) and 315 mAh g(-1) at 1000 mA g(-1), the capacity retention of 305 mAh g(-1) after 100 cycles at 300 mA g(-1) are obtained, respectively. Furthermore, the 3D architecture retains good structural integrity after cycling, confirming that the introduction of high-stretchy and robust graphene layers can effectively buffer alloying anodes, and simultaneously provide sustainable contact and protection of the active materials. Such findings show its great potential as superior binder-free anodes for LIBs and SIBs.  , |
|
|
|
|
|
|
|
|
|
|
State Key Laboratory of Fire Science, University of Science and Technology of China
Jinzhai Road 96, Hefei, Anhui, P. R. China
P. O.: 230026 |
|
|
|
Tel:(+86)551 63601651 |
|
Fax:(+86)551 63601669 |
|
E-mail:sklfs@ustc.edu.cn |
|
|
|
|
|