S. H. Jiang, K. Q. Zhou, Y. Q. Shi, S. M. Lo, H. Y. Xu, Y. Hu and Z. Gui (2014) Applied Surface Science 290 313-319. |
|
|
Date: 2015-03-29
Author: SKLFS  , Source: SKLFS  ,
|
|
S. H. Jiang, K. Q. Zhou, Y. Q. Shi, S. M. Lo, H. Y. Xu, Y. Hu and Z. Gui (2014) In situ synthesis of hierarchical flower-like Bi2S3/BiOCl composite with enhanced visible light photocatalytic activity. Journal/Applied Surface Science 290 313-319. [In English] Web link: http://dx.doi.org/10.1016/j.apsusc.2013.11.074 Keywords: ,Heterojunction, Bi2S3/BiOCl composite, Hierarchical flower-like, structure, Chemical synthesis, Photocatalysis, DRIVEN PHOTOCATALYSTS, DEGRADATION, ARCHITECTURES, IRRADIATION, ELECTRODE, REMOVAL, BI2WO6, BIOCL Abstract: Novel BiOCl micro-flower was synthesized by a facile method and used as a precursor to produce Bi2S3/BiOCl composites. The Bi2S3/BiOCl composites, synthesized by in situ etching of BiOCl precursor with thiacetamide (TAA) solution, maintain the hierarchical flower-like structure and exhibit a large surface area. X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and UV-vis diffuse reflectance spectroscopy (DRS) were employed to study the structures, morphologies and optical properties of the as-prepared samples. Under visible light (lambda >, 400 nm), the flower-like Bi2S3/BiOCl composite displayed much higher photocatalytic activity than single Bi2S3, BiOCl and 2D plate-like Bi2S3/BiOCl composite for the degradation of rhodamine B (RhB). The increased photocatalytic activity of Bi2S3/BiOCl could be attributed to the formation of the heterostructure between Bi2S3 and BiOCl and large surface area of the hierarchical structure, which effectively separate the photoinduced electron-hole pairs and suppress their recombination. (C) 2013 Elsevier B. V. All rights reserved.
|
|
|
|
|
|
|
|
|
|
|
State Key Laboratory of Fire Science, University of Science and Technology of China
Jinzhai Road 96, Hefei, Anhui, P. R. China
P. O.: 230026 |
|
|
|
Tel:(+86)551 63601651 |
|
Fax:(+86)551 63601669 |
|
E-mail:sklfs@ustc.edu.cn |
|
|
|
|
|