homepage  Research  Publications  2014
 
C. J. Wang and C. M. Guo (2014) Shock Waves 24 467-477.
Date: 2015-03-25   Author: SKLFS  ,   Source: SKLFS  ,
 

C. J. Wang and C. M. Guo (2014) On the influence of low initial pressure and detonation stochastic nature on Mach reflection of gaseous detonation waves. Journal/Shock Waves 24 467-477. [In English]
Web link: http://dx.doi.org/10.1007/s00193-014-0516-5
Keywords: ,Gaseous detonation wave, Mach reflection, Regular reflection, Transverse, wave, Detailed chemical reaction model, Numerical simulation, NUMERICAL SIMULATIONS

Abstract: The two-dimensional, time-dependent and reactive Navier-Stokes equations were solved to obtain an insight into Mach reflection of gaseous detonation in a stoichiometric hydrogen-oxygen mixture diluted by 25 % argon. This mixture generates a mode-7 detonation wave under an initial pressure of 8.00 kPa. Chemical kinetics was simulated by an eight-species, forty-eight-reaction mechanism. It was found that a Mach reflection mode always occurs for a planar detonation wave or planar air shock wave sweeping over wedges with apex angles ranging from to . However, for cellular detonation waves, regular reflection always occurs first, which then transforms into Mach reflection. This phenomenon is more evident for detonations ignited under low initial pressure. Low initial pressure may lead to a curved wave front, that determines the reflection mode. The stochastic nature of boundary shape and transition distance, during deflagration-to-detonation transition, leads to relative disorder of detonation cell location and cell shape. Consequently, when a detonation wave hits the wedge apex, there appears a stochastic variation of triple point origin and variation of the angle between the triple point trajectory and the wedge surface. As the wedge apex angle increases, the distance between the triple point trajectory origin and the wedge apex increases, and the angle between the triple point trajectory and the wedge surface decreases exponentially.

 
Print    Close
 
 
   
  
 
Relevant link
Contact us
State Key Laboratory of Fire Science, University of Science and Technology of China
Jinzhai Road 96, Hefei, Anhui, P. R. China
P. O.: 230026
   
Tel:(+86)551 63601651
Fax:(+86)551 63601669
E-mail:sklfs@ustc.edu.cn
 
 
Copyright © 1990-2011 State Key Laboratory of Fire Science, University of Science and Technology of China
Tel:(+86)551 3601651 | Fax:(+86)551 3601669 | E-mail:sklfs@ustc.edu.cn | ICP: D20380176