homepage  Research  Publications  2013
 
X. P. Liu, J. L. Niu and K. C. S. Kwok (2013) Building Simulation 6 151-164.
Date: 2014-06-23   Author: SKLFS  ,   Source: WOS  ,
 

X. P. Liu, J. L. Niu and K. C. S. Kwok (2013) Evaluation of RANS turbulence models for simulating wind-induced mean pressures and dispersions around a complex-shaped high-rise building. Journal/Building Simulation 6 151-164. [In English]
Web link: http://dx.doi.org/10.1007/s12273-012-0097-0
Keywords: high-rise building, computational fluid dynamics, pollutant dispersion, air cross-contamination, FIELD POLLUTANT DISPERSION, K-EPSILON MODELS, CONCENTRATION, FLUCTUATIONS, NUMERICAL EVALUATION, CFD SIMULATION, TUNNEL SIMULATIONS, BUILT ENVIRONMENT, PLUME DISPERSION, STREET CANYONS, BOUNDARY-LAYER
Abstract: Re-ingestion of the contaminated exhaust air from the same building is a concern in high-rise residential buildings, and can be serious depending on wind conditions and contaminant source locations. In this paper, we aim to assess the prediction accuracy of three k-E >, turbulence models, in numerically simulating the wind-induced pressure and indoor-originated air pollutant dispersion around a complex-shaped high-rise building, by comparing with our earlier wind tunnel test results. The building modeled is a typical, 33-story tower-like building consisting of 8-household units on each floor, and 4 semi-open, vertical re-entrant spaces are formed, with opposite household units facing each other in very close proximity. It was found that the predicted surface pressure distributions by the two revised k-E >, models, namely the renormalized and realizable k-E >, models agree reasonably with experimental data. However, with regard to the vertical pollutant concentration distribution in the windward re-entrance space, obvious differences were found between the three turbulence models, and the simulation result using the realizable k-E >, model agreed the best with the experiment. On the other hand, with regard to the vertical pollutant concentration distribution in the re-entrant space oblique to the wind, all the three models gave acceptable predictions at the concentration level above the source location, but severely underestimated the downward dispersion. The effects of modifying the value of the turbulent Schmidt number in the realizable k-E >, model were also examined for oblique-wind case. It was confirmed that the numerical results, especially the downward dispersion, are quite sensitive to the value of turbulent Schmidt number.

 
Print    Close
 
 
   
  
 
Relevant link
Contact us
State Key Laboratory of Fire Science, University of Science and Technology of China
Jinzhai Road 96, Hefei, Anhui, P. R. China
P. O.: 230026
   
Tel:(+86)551 63601651
Fax:(+86)551 63601669
E-mail:sklfs@ustc.edu.cn
 
 
Copyright © 1990-2011 State Key Laboratory of Fire Science, University of Science and Technology of China
Tel:(+86)551 3601651 | Fax:(+86)551 3601669 | E-mail:sklfs@ustc.edu.cn | ICP: D20380176