homepage  Research  Publications  2009
 
Liu X, Song WG, Zhang J (2009b) Physica a-Statistical Mechanics and Its Applications 388(13), 2717-2726.
Date: 2011-08-16   Author: SKLFS  ,   Source: WOS  ,
 

Liu X, Song WG, Zhang J (2009b) Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing. Physica a-Statistical Mechanics and Its Applications 388(13), 2717-2726. [In English]

Web link: http://dx.doi.org/10.1016/j.physa.2009.03.017

Keywords:

Evacuation, Pedestrian flow, Digital image processing, Mean-shift, algorithm, Experiment, social force model, pedestrian dynamics, cellular-automaton, crowd, dynamics, hong-kong, simulation, facilities, behavior, flow, exit

Abstract: In this Study, experiments of single-file pedestrian movement were Conducted and the movement parameters of pedestrians were extracted with a digital image processing method based on a mean-shift algorithm. The microscopic characteristics of pedestrian dynamics, including velocity, density, and lateral oscillation, as well as their interrelations, were obtained and analyzed. Firstly, we studied the lateral oscillation phenomena of pedestrian movement. The result indicates that the trajectory of pedestrians presents a wavy form and the amplitude of the oscillation remains about 5.5 cm when the pedestrians move with free walking velocity, which is the velocity when there is 110 Obvious interaction between sequential pedestrians, but when the movement velocity decreases to 0.27 m/s, the amplitude of oscillation increases to 13 cm. With increasing density, the velocity decreases and the amplitude of oscillation presents a linear increase trend. The increasing oscillation amplitude widens the Occupation area of a pedestrian with low velocity, so as to make the moving efficiency even worse. Secondly. we Studied the frequency of the oscillation, the result indicates that the frequency remains at 2 Hz when pedestrians move with a free walking velocity, but it presents a similar linear decrease trend when the velocity changes to a lower value. The decrease of oscillation frequency is also a negative feedback to the moving efficiency. Thirdly, it is found that with the increase of crowd density, the time interval between two sequential pedestrians increases, though the space gap between them decreases. The quantitative relation between time interval and crowd density is obtained. The study in this paper provides fundamental data and a basic method for understanding pedestrian dynamics, developing and validating evacuation models. The results are also expected to be useful for evacuation design. (C) 2009 Elsevier B.V. All rights reserved.

 
Print    Close
 
 
   
  
 
Relevant link
Contact us
State Key Laboratory of Fire Science, University of Science and Technology of China
Jinzhai Road 96, Hefei, Anhui, P. R. China
P. O.: 230026
   
Tel:(+86)551 63601651
Fax:(+86)551 63601669
E-mail:sklfs@ustc.edu.cn
 
 
Copyright © 1990-2011 State Key Laboratory of Fire Science, University of Science and Technology of China
Tel:(+86)551 3601651 | Fax:(+86)551 3601669 | E-mail:sklfs@ustc.edu.cn | ICP: D20380176