homepage  Research  Publications  2008
 
Fang SL, Hu Y, Song L, Zhan J, He QL (2008) Journal of Materials Science 43(3), 1057-1062.
Date: 2011-08-16   Author: SKLFS  ,   Source: WOS  ,
 

Fang SL, Hu Y, Song L, Zhan J, He QL (2008) Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. Journal of Materials Science 43(3), 1057-1062. [In English]

Web link: http://dx.doi.org/10.1007/s10853-007-2241-2

Keywords:

red phosphorus, composites, nanocomposites, flammability, polymers, behavior

Abstract: Halogen-free flame retardant silicone rubber (SR) composites, using magnesium hydroxide sulfate hydrate (MHSH) whiskers as flame retardant have been prepared by a two-roll mill. Moreover, microencapsulated red phosphorus (MRP) was used as a synergist. Mechanical tests were performed to determine the tensile strength, elongation at break, and shore hardness of the composites. The morphology of fracture surface was observed by environmental scanning electron microscopy (ESEM). The results showed MHSH slightly reduced the tensile strength of the composites, but had obvious influence on the elongation at break. Meanwhile, Shore A hardness presented uptrend with increasing MHSH content. The addition of vinyl silicone fluid (VSF) could improve the compatibility of the MHSH whiskers in SR matrix, and therefore improved the mechanical properties of composites. The flammability properties of composites were investigated by limited oxygen index (LOI), UL-94 tests, and cone calorimetry experiments. It is found that MHSH whiskers can effectively improve the flame retardancy of SR composites due to the endothermic degradation of MHSH whiskers accompanied with the release of water vapor, and the formation of fibrous magnesia acting as a barrier layer. The incorporation of MRP in SR/MHSH whiskers system had a synergic fire retardant effect in the condensed and gas phase. In addition, thermogravimetric analysis (TGA) indicated the presence of MRP enhanced thermal stability of the SR/MHSH composites at higher temperature range, and remarkably promoted char residue yield.

 
Print    Close
 
 
   
  
 
Relevant link
Contact us
State Key Laboratory of Fire Science, University of Science and Technology of China
Jinzhai Road 96, Hefei, Anhui, P. R. China
P. O.: 230026
   
Tel:(+86)551 63601651
Fax:(+86)551 63601669
E-mail:sklfs@ustc.edu.cn
 
 
Copyright © 1990-2011 State Key Laboratory of Fire Science, University of Science and Technology of China
Tel:(+86)551 3601651 | Fax:(+86)551 3601669 | E-mail:sklfs@ustc.edu.cn | ICP: D20380176