homepage  Research  Publications  2007
 
Shi CL, Lu WZ, Chow WK, Huo R (2007) International Journal of Heat and Mass Transfer 50(3-4), 513-529.
Date: 2011-08-16   Author: SKLFS  ,   Source: WOS  ,
 

Shi CL, Lu WZ, Chow WK, Huo R (2007) An investigation on spill plume development and natural filling in large full-scale atrium under retail shop fire. International Journal of Heat and Mass Transfer 50(3-4), 513-529. [In English]

Web link: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.07.020

Keywords:

atrium, shop fire, spill plume, zone model, natural filling, mechanical, exhaust, designated refuge floor, air-flow, smoke, convection

Abstract: This paper reports an investigation on the scenarios of the spill plume and the resultant natural filling in a full-scale atrium mock-up due to a retail shop fire. The study includes two aspects, i.e., the full-scale experiment and the numerical simulation. A spill plume model is proposed to predict the characteristic properties of the plume development in the atrium under a retail shop fire. Furthermore, to accurately predict the shop fire in the atrium, an improved zone model is developed combining the transport lag time model and the spill plume model. Besides validating the developed model by experiments, the case is also simulated by the established zone model, i.e., CFAST code, and the computational fluid dynamics model, i.e., FDS code. By both physical and numerical experiments, the process of natural smoke filling and the temperature rise in the atrium are investigated and well understood. It is found that a typical spill plume contains three regimes, i.e., the curved section out of the retail shop door, the line plume in the near field, and the axisymmetric plume in the far field. Predictions from the proposed empirical model for the spill plume and the resultant improved zone model compare favorably with the experiments. The study indicates that the atrium becomes very dangerous due to such shop fire if no smoke control employed. The ability of mechanical exhaust system in the atrium to mitigate the hazard of a retail shop fire is investigated as well. (c) 2006 Elsevier Ltd. All rights reserved.

 
Print    Close
 
 
   
  
 
Relevant link
Contact us
State Key Laboratory of Fire Science, University of Science and Technology of China
Jinzhai Road 96, Hefei, Anhui, P. R. China
P. O.: 230026
   
Tel:(+86)551 63601651
Fax:(+86)551 63601669
E-mail:sklfs@ustc.edu.cn
 
 
Copyright © 1990-2011 State Key Laboratory of Fire Science, University of Science and Technology of China
Tel:(+86)551 3601651 | Fax:(+86)551 3601669 | E-mail:sklfs@ustc.edu.cn | ICP: D20380176